Qu’est-ce que la physique quantique ? (par Robert Paris)

lundi 6 octobre 2008.
 

1) Max Planck, inventeur des quanta avec Einstein, écrit dans "Initiations à la physique de la nature des lois physique" :

« La physique, considérée par la génération précédente comme une des plus vieilles et des plus solidement assises parmi les connaissances humaines, est entrée dans une période d’agitation révolutionnaire qui promet d’être une des plus intéressantes de son histoire. (…) Le temps où la philosophie et les sciences positives se considéraient comme étrangères l’une à l’autre et se regardaient mutuellement avec méfiance doivent être considérés comme révolus. (…) L’hypothèse des quanta est venue d’une façon tout à fait inattendue bouleverser toute cette belle harmonie et porter le trouble dans une conception de l’univers qui semblait presque idéalement parfaite. Si nous cherchons à caractériser en deux mots l’idée directrice qui est à la base de cette hypothèse, nous dirons qu’elle consiste dans l’introduction d’une nouvelle constante universelle : le quantum élémentaire. (…) Cette notion se réduit en définitive à poser en principe l’équivalence d’une énergie et d’une fréquence vibratoire : E = h x v. Or cette équivalence n’a aucun sens du point de vue de la théorie classique. (…) Le calcul montre que, à toute valeur des constantes de l’énergie choisies arbitrairement, il ne correspond pas une onde finie, mais seulement certaines de ces valeurs dites valeurs propres de l’énergie. De ces valeurs discontinues de l’énergie, le postulat quantique permet de déduire des valeurs, également discontinues, de la période vibratoire. »

2) Gilles Cohen-Tannoudji expose l’importance de cette révolution dans "Les constantes universelles" :

"On dit souvent que la constante de Planck a fait apparaître du discontinu dans la matière ; en quoi elle aurait subitement et durablement dérouté les physiciens. En réalité, le discontinu que découvre le physicien allemand affecte non la matière mais les interactions, les forces. Et voilà la surprise la plus considérable ! Car enfin, même si elle suscitait au début de ce siècle encore bien des débats, l’hypothèse atomique, qui n’est rien d’autre que la discontinuité de la matière, ne présentait pas un caractère de nouveauté radicale ; elle était déjà sous-jacente à la thermodynamique, et l’on vient de rappeler comment elle avait déjà guidé bien des physiciens parmi les plus éminents et permis d’obtenir des résultats remarquables.

Mais une discontinuité logée dans ce que nous appelons aujourd’hui les interactions, c’est-à-dire dans les forces, voilà qui apparaissait beaucoup plus difficile à admettre et qui provoqua une véritable "crise" de la pensée physique ! (...) On découvrait la nécessité d’introduire le discontinu dans une "interaction". Il s’agit là non d’un concept, mais de ce que j’appellerais "une catégorie" qui désigne "à vide", tout ce qui concourt à la formation d’une structure, à son évolution, à sa stabilité ou à sa disparition. (...)

Selon la physique classique, l’émission et l’absorption de lumière par la matière s’effectuent de façon absolument continue. La quantité d’énergie lumineuse doit donc s’écouler, tel un fluide, continûment. Or, Planck s’aperçut que le rayonnement émis par une enceinte fermée (...) s’effectue de manière discontinue, par valeurs "discrètes", par "quanta". (...) Il s’agissait d’une révolution si radicale dans la pensée physique que Planck a d’abord reculé devant ses conséquences, et qu’il a fallu toute l’audace du jeune Albert Einstein pour interpréter h comme introduisant du discontinu dans les interactions. "

La formulation de la physique quantique en 1918 était la suivante :

"Un système atomique ne peut exister de façon permanente que dans une certaine série d’états correspondant à une série discontinue de valeurs de son énergie, et par conséquent toute modification de l’énergie du système, en particulier l’émission et l’absorption d’un rayonnement électromagnétique, doit se produire par une transition complète entre deux états de ce genre. Ces états sont appelés les "états stationnaires" du système.

Le rayonnement absorbé ou émis au cours d’une transition entre deux états stationnaires a une seule fréquence donnée par la relation fréquence égale saut d’énergie divisé par la constante de Planck h."

3) Niels Bohr dans « Physique atomique et connaissance humaine » :

« Le point de départ fut ici ce qu’on appelle le postulat quantique, selon lequel tout changement dans l’énergie d’un atome est le résultat d’une transition complète entre deux états stationnaires. En admettant en outre que toute réaction radiative atomique fait intervenir l’émission ou l’absorption d’un seul quantum de lumière, les valeurs de l’énergie des états stationnaires purent être déterminés à partir du spectre. »

La notion de quanta (des grains en nombre entier qui ne sont pas des grains d’énergie mais des grains d’action - l’action étant le produit d’une énergie et d’un temps est du même type qu’un moment cinétique de rotation) est un des fondements de cette physique qui suppose donc que le discontinu et le discret soient des caractéristiques de la nature de la matière.

Cela a de nombreuses conséquences extrêmement étonnantes pour qui se contente d’observer la matière à notre échelle. Cet étonnement a pour noms le mouvement par bonds, le flou quantique, l’impossibilité de mesurer en même temps certaines quantités, l’intrication (ou non-localité)quantique, certains effets comme l’effet tunnel, l’onde de matière et le corpuscule de lumière (c’est-à-dire la dualité de la matière/lumière), etc...

Notre ancien bon sens sur la matière fondé sur son apparence à notre échelle est complètement bouleversé. Les notions scientifiques anciennes également. Plus question par exemple de trajectoire continue. plus question d’une position et d’une vitesse à chaque instant... etc

4) Louis de Broglie, dans « La physique nouvelle et les quanta » :

« Sans quanta, il n’y aurait ni lumière ni matière et, s’il est permis de paraphraser un texte évangélique, on peut dire que rien de ce qui a été fait n’a été fait sans eux. On conçoit donc quelle inflexion essentielle a subi le cours du développement de notre science humaine le jour où les quanta, subrepticement, s’y sont introduits. Ce jour-là, le vaste et grandiose édifice de la physique classique s’est retrouvé ébranlé jusque dans ses fondements, sans, d’ailleurs, qu’on s’en soit rendu tout d’abord bien compte. (…) Fidèle à l’idéal cartésien, la physique classique nous montrait l’univers comme analogue à un immense mécanisme susceptible d’être décrit avec une entière précision par la localisation de ses parties dans l’espace et leur modification au cours du temps, mécanisme dont l’évolution pouvait en principe être prévue avec une rigoureuse exactitude quand on possédait un certain nombre de données sur son état initial. Mais une telle conception reposait sur certaines hypothèses implicites que l’on admettait presque sans s’en apercevoir. Une de ces hypothèses était que le cadre de l’espace et du temps dans lequel nous cherchons presque instinctivement à localiser toutes nos sensations est un cadre parfaitement rigide et déterminé où chaque événement physique peut, en principe, être rigoureusement localisé indépendamment de tous les processus dynamiques qui s’y déroulent. Dès lors, toutes les évolutions du monde physique sont nécessairement représentées par des modifications des états locaux de l’espace au cours du temps, et c’est pourquoi dans la science classique les grandeurs dynamiques, telles que l’énergie et la quantité de mouvement, apparaissent comme des grandeurs dérivées construites à l’aide du concept de vitesse, la cinématique servant ainsi de base à la dynamique. Tout autre est le point de vue de la physique quantique. L’existence du quantum d’action, sur lequel nous aurons si souvent à revenir dans le cours de cet ouvrage, implique en effet une sorte d’incompatibilité entre le point de vue de la localisation dans l’espace et dans le temps et le point de vue de l’évolution dynamique ; chacun de ces points de vue est susceptible d’être utilisé pour la description du monde réel, mais il n’est pas possible de les adopter simultanément dans toute leur rigueur. La localisation exacte dans l’espace et dans le temps est une sorte d’idéalisation statique qui exclut toute évolution et tout dynamisme ; l’idée d’état de mouvement prise dans toute sa pureté est par contre une idéalisation dynamique qui est en principe contradictoire avec les concepts de position et d’instant. La description du monde physique dans les théories quantiques ne peut se faire qu’en utilisant plus ou moins l’une ou l’autre de ces deux images contradictoires. (…) Il est néanmoins parfaitement légitime de se servir de la cinématique quand on étudie des phénomènes à grande échelle ; mais pour les phénomènes à l’échelle atomique où les quanta jouent un rôle prépondérant, on peut dire que la cinématique, définie comme l’étude du mouvement faite indépendamment de toute considération dynamique, perd complètement sa signification. (…) La mécanique et la physique classiques ont été édifiées pour rendre compte des phénomènes qui se jouent à notre échelle et elles sont aussi valables pour les échelles supérieures, les échelles astronomiques. Mais, si l’on descend à l’échelle atomique, l’existence des quanta vient limiter leur validité. Pourquoi en est-il ainsi ? Parce que la valeur du quantum d’action mesurée par la fameuse constante de Planck est extraordinairement petite par rapport à nos unité usuelles, c’est-à-dire par rapport aux grandeurs qui interviennent à notre échelle. (…)

Les équations de la dynamique classique du point matériel expriment que le produit de la masse du point matériel par l’une quelconque des composantes rectangulaires de son accélération est égale à la composante correspondante de la force. (…) Ce résultat exprime que la dynamique classique du point matériel est entièrement en accord avec le postulat du déterminisme physique, postulat selon lequel l’état futur du monde matériel doit être entièrement prévisible quand on possède un certain nombre de données sur son état présent. Une autre remarque est intéressante à faire ici. Le point matériel étant supposé ponctuel, sa trajectoire est une ligne qui n’explore dans l’espace à trois dimensions qu’un continu à une dimension. (…) Il n’explore le champ de force que le long de sa trajectoire. (…) En mécanique classique, les accidents topologiques qui peuvent exister dans l’espace à des distances finies de la trajectoire d’un point matériel ne peuvent aucunement influer sur son mouvement. Plaçons, par exemple, sur la trajectoire d’un point matériel, un écran percé d’un trou. Si la trajectoire passe vers le centre du trou, elle ne sera aucunement perturbée par l’accident topologique que constitue la présence de l’écran. (…) Il est inconcevable, en mécanique classique, que le mouvement du point matériel traversant le trou en question dépende du fait qu’il y ait ou pas d’autres trous dans l’écran. L’on comprend tout de suite l’importance de ces remarques pour une interprétation corpusculaire de l’expérience des trous de Young et l’on pressent que la mécanique ondulatoire doit apporter de nouveau sur ce point. (…) Les ondulations lumineuses traversant sans difficulté les espaces vides, ce n’est pas la matière qui les transmet. Quel est donc le support de ces ondes, quel est le milieu dont la vibration constitue la vibration lumineuse ? Telle est la question qui se posait aux protagonistes de la théorie des ondulations. (…) L’éther envisagé comme un milieu élastique doit être un milieu infiniment plus rigide que l’acier car il ne peut transmettre que des vibrations transversales et cependant ce milieu si rigide n’exerce aucun frottement sur les corps qui le traversent et ne freine aucunement le mouvement des planètes. (…) Après avoir montré que le rotationnel du champ magnétique est égal à la densité du courant électrique, donnant ainsi naissance à l’électromagnétisme, (…) Maxwell, après avoir écrit les lois générales des phénomènes électriques, s’aperçut de la possibilité de considérer la lumière comme une perturbation électromagnétique. Par là, il a fait rentrer toute la science de l’optique à l’intérieur des cadres de l’électromagnétisme, réunissant ainsi deux domaines qui semblaient entièrement distincts. (…) La théorie électromagnétique de Maxwell fournissait des équations représentant exactement à notre échelle la liaison entre les champs électromagnétiques mesurables d’une part, les charges et les courants électriques d’autre part. Obtenues en réunissant en un seul système formel le résultat des expériences macroscopiques, leur valeur était incontestable dans ce domaine. Mais pour décrire le détail des phénomènes électriques au sein de la matière et à l’intérieur des atomes, pour prévoir les rayonnements émis ou absorbés par les particules matérielles ultimes, il fallait extrapoler les équations de Maxwell et leur donner une forme applicable à l’étude des phénomènes de l’échelle atomique et corpusculaire. C’est ce que fit, avec plus de hardiesse qu’il ne peut paraître au premier abord, un des grands pionniers de la physique théorique moderne, H.A. Lorentz.

Lorentz prit comme point de départ l’idée d’introduire dans les équations de l’électromagnétisme la structure discontinue de l’électricité. (…) En opérant des moyennes sur les phénomènes microscopiques élémentaires, on peut repasser des équations de Lorentz aux équations de Maxwell. (…) La théorie des électrons, édifiée sur les bases que nous venons d’esquisser, a conduit à d’importants succès pour la prévision d’un grand nombre de phénomènes. Elle a d’abord permis de retrouver l’interprétation des lois de la dispersion. Elle a ensuite, et cela a été sans doute son plus important succès, permis de prévoir d’une façon exacte l’effet Zeeman normal, c’est-à-dire la façon dont les raies spectrales émises par un atome sont affectées dans le cas le plus simple par la présence d’un champ magnétique uniforme. (…) La théorie des électrons a aussi paru apporter la solution d’un problème capital : l’origine de l’émission des rayonnements par la matière. D’après les équations de Lorentz, un électron animé d’un mouvement rectiligne et uniforme transporte avec lui globalement son champ électromagnétique et, par suite, il n’y a dans ce cas aucune émission d’énergie dans l’espace environnant. Mais si le mouvement d’un électron comporte une accélération, on peut démontrer qu’il y a émission d’une onde électromagnétique et l’énergie ainsi perdue à chaque instant par l’électron est proportionnelle au carré de son accélération. (…) Si l’on veut interpréter le rayonnement des atomes par le mouvement des électrons intra-atomiques, il faut supposer qu’à l’état normal les électrons intérieurs à l’atome sont immobiles ; sans quoi, obligés de se mouvoir à l’intérieur du très petit domaine de l’atome, ils seraient forcément animés de mouvements très accélérés et émettraient constamment de l’énergie sous forme de rayonnement, ce qui serait contraire à l’idée même de stabilité de l’atome. (…) L’origine de la théorie des quanta est dans les recherches faites vers 1900 par M. Planck sur la théorie du rayonnement noir. (…) Si l’on considère une enceinte maintenue à température uniforme, les corps maintenus dans cette enceinte émettent et absorbent du rayonnement et il finit par s’établir un état d’équilibre (…) Kirchoff a montré que cet état d’équilibre est unique et correspond à une composition spectrale parfaitement déterminée du rayonnement enfermé dans l’enceinte. De plus, la composition de ce rayonnement dépend uniquement de la température de l’enceinte. (…) Il est souvent appelé du nom assez incorrect de « rayonnement noir » correspondant à cette température. (…) M. Planck avait commencé par reprendre l’étude de la question en imaginant que la matière est formée d’oscillateurs électroniques, c’est-à-dire d’électrons susceptibles d’osciller autour d’une position d’équilibre sous l’action d’une force proportionnelle à l’élongation. (…) M. Planck put apercevoir que l’inexactitude de la loi de Rayleigh provient du rôle trop grand que jouent, dans l’image classique des échanges d’énergie entre oscillateurs et rayonnement, les oscillateurs de haute fréquence. (…) M. Planck a eu alors l’idée géniale qu’il fallait introduire dans la théorie un élément nouveau, entièrement étranger aux conceptions classiques, qui viendrait restreindre le rôle des oscillateurs de haute fréquence, et il a posé le fameux postulat suivant : « La matière ne peut émettre l’énergie radiante que par quantités finies proportionnelles à la fréquence. » Le facteur de proportionnalité est une constante universelle, ayant les dimensions d’une action mécanique. C’est la célèbre constante h de Planck. Mettant en jeu cette hypothèse d’aspect paradoxal, Planck a repris la théorie de l’équilibre thermique et trouvé une nouvelle loi de répartition spectrale du rayonnement noir à laquelle son nom est resté attaché. (…)

Peu à peu, l’importance fondamentale de l’idée de Planck apparut. Les théoriciens s’aperçurent que la discontinuité traduite par l’hypothèse des quanta est incompatible avec les idées générales qui servaient jusqu’alors de bases à la physique et exigeait une révision complète de ces idées. (…) Pour trouver une forme générale de sa théorie, Planck a dû renoncer à l’hypothèse primitive des quanta d’énergie et lui substituer l’hypothèse des quanta d’action (produit d’une énergie par un temps ou d’une quantité de mouvement par une longueur) »

L’énigmatique électron ne serait-il pas finalement une structure émergente issue du vide quantique et fractale ?

L’électron n’a pas une position fixe : sa charge tremble, sa masse saute d’un point à un autre, son nuage de polarisation interagit avec le voisinage.... Cela définit diverses "dimensions" de l’électron. S’il est capté, il est ponctuel. Sa masse est ponctuelle. Sa charge est ponctuelle. S’il interagit, il est considéré par l’autre objet comme une zone de dimension non nulle. les divers es dimensions ont entre elles un rapport égal à la constante de structure fine alpha. Voilà les résultats de la physique quantique sur la "particule élémentaire".

Qu’est-ce que l’atome, l’élémentaire, l’ « insécable » ? Un nuage de points à de nombreuses échelles !

5) Extraits de « Sciences et dialectiques de la nature » (ouvrage collectif – La Dispute)

« La portée vraiment universelle de la découverte de Planck et Einstein (celle des quanta) lui vient de ce que le caractère discontinu n’affecte pas seulement le rayonnement le rayonnement électromagnétique mais encore l’ensemble des interactions : dans tout l’univers, il n’y a pas d’interaction qui ne mette en jeu une action au moins égale à la constante de Planck h. (…) L’irruption du discontinu dans l’action nous contraint à renoncer définitivement à une description causale et déterministe des processus mettant en jeu des actions du même ordre de grandeur que le quantum d’action. L’absorption ou l’émission d’un photon par un atome qui change de niveau d’énergie, la désintégration spontanée d’un noyau radioactif ou d’une particule instable, une réaction particulaire provoquée dans une expérience auprès d’un accélérateur sont des processus que nous devons renoncer à décrire individuellement de manière déterministe. Il nous faut les intégrer à des ensembles statistiques descriptibles en termes de probabilités. (…) Comme l’a dit Léon Rosenfeld, « probabilité ne veut pas dire hasard sans règle, mais juste l’inverse : ce qu’il y a de réglé dans le hasard. Une loi statistique est avant tout une loi, l’expression d’une régularité, un instrument de prévision. »

6) Article « Le réel, à l’horizon de la dialectique » de Gilles Cohen-Tannoudji

« S’il fallait caractériser l’idée principale de la théorie des quanta, nous dirions : il est nécessaire de supposer que certaines quantités physiques, regardées jusqu’à présent comme continues, sont composées de quanta élémentaires » rapporte Einstein dans « L’évolution des idées en physique ».

« Le quantum d’action progresse dans le vide en franchissant des ’’pas’’. (...) Or cette règle a quelque chose de simple : seuls sont ’’permis’’ les sauts dans lesquels un électron de l’atome voit son nombre quantique changer d’une unité. (...) Lorsque l’atome émet (ou absorbe) un quantum d’action, le quantum emporte (ou apporte) avec lui, de par son spin, une unité d’action de rotation. »

7) Le physicien Jean-Claude Auffray dans « L’atome »

Lochak, Diner et Fargue dans « L’objet quantique » : « La théorie des quanta s’est développée simultanément de deux manières différentes. La première consiste à mettre en avant l’existence d’états discontinus dans le monde microphysique et de transitions entre ces états. La seconde consiste plutôt à mettre en avant le fait que les propriétés corpusculaires et ondulatoires (…) se trouvent mêlées l’une à l’autre dans tous les domaines. Les deux façons s’imbriquent donc étroitement. (…) Planck introduisit dans la physique un élément de discontinuité, là où la continuité semblait devoir régner. D’après lui, un atome ne pouvait absorber petit à petit, continûment, de l’énergie lumineuse : il ne pouvait le faire que par paquets, par quanta, dont la valeur extrêmement petite, mais quand même finie, était déterminée par une constante qu’il désigna par h : la célèbre constante de Planck. (…) L’hypothèse des quanta voulait dire cette chose étrange que le mouvement des atomes n’évolue pas continûment mais par bonds discontinus : comme si une fusée ne pouvait s’élever progressivement au dessus de la terre vers n’importe quelle orbite et ne pouvait atteindre que certaines orbites particulières en sautant brusquement de l’une à l’autre. »

8) Werner Heisenberg – Sur le principe d’incertitude :

« Faisons donc connaissance avec l’une des caractéristiques fondamentales de celle-ci : le principe d’incertitude. Position et vitesse d’une particule Imaginons que nous avons à donner une description complète d’un électron, c’est-à-dire à déterminer des grandeurs comme sa position ou sa vitesse. A première vue, cela ne pose pas de problème et nous devons pouvoir mesurer ces quantités avec une précision illimitée. C’est ce que la physique classique prévoit, mais l’avis de la mécanique quantique est différent. Selon elle, toute description d’un phénomène physique doit prendre en compte l’acte d’observation. Ainsi, nous ne pouvons pas nous contenter de dire qu’il n’y a aucune difficulté dans la mesure, mais, au contraire, il nous faut étudier avec soin la façon dont nous allons effectuer celle-ci. Essayons donc de mesurer simultanément la position et la vitesse de l’électron. Le moyen le plus simple est d’utiliser un rayon lumineux. Nous ne sommes pas limités à la lumière visible, nous pouvons avoir recours à toute la gamme des ondes électromagnétiques, depuis le domaine radio jusqu’aux rayons gamma. Commençons avec un faisceau radio, de longueur d’onde un mètre par exemple. Le problème qui se pose est que nous ne pouvons déterminer la position de l’électron qu’avec une précision de l’ordre de la longueur d’onde. Ainsi, avec notre rayonnement radio, nous ne pouvons déterminer la position qu’à un mètre près. Pour augmenter la précision, la solution est simple. Passons de l’autre côté du spectre électromagnétique et utilisons des rayons gamma. Les longueurs d’onde sont maintenant très petites et la position de l’électron peut être mesurée avec une grande précision, par exemple un millionième de milliardième de mètre. Mais un nouveau problème se pose. Les photons qui composent le rayonnement gamma sont très énergétiques. Leur rencontre avec l’électron est violente et le choc perturbe le mouvement de la particule, donc sa vitesse. En conséquence, une grande incertitude affecte maintenant notre détermination de cette dernière. Pour ne pas perturber la particule et pouvoir mesurer avec précision sa vitesse, il faut avoir recours à un rayonnement peu énergétique, donc aux ondes radio. Et nous nous retrouvons finalement dans le cas précédent, avec une grande incertitude sur la position. »

« Stabilité de la matière

La théorie quantique eut parmi ses premiers objectifs de comprendre la stabilité des édifices atomiques. En effet, un « électron classique » (non-quantique) pourrait orbiter à une distance arbitraire d’un « noyau classique ». Rayonnant de l’énergie électromagnétique, il pourrait se rapprocher indéfiniment du noyau, perdant dans cette chute une quantité d’énergie … infinie ! La théorie quantique, en corrélant l’extension spatiale d’un électron à son énergie cinétique (inégalités d’Heisenberg), interdit une telle catastrophe et assure l’existence d’atomes stables, dont l’énergie ne peut descendre en dessous d’un certain plancher absolu (niveau fondamental). Mais Pauli fit remarquer, dès les années 1925, que cette stabilité individuelle des atomes, si elle est nécessaire, ne suffit en rien à assurer la stabilité de la matière. (…) Si le principe de Pauli n’intervenait pas pour tenir les électrons à distance mutuelle, la matière serait incomparablement plus concentrée, d’autant plus que la quantité en serait plus grande. (…) Ajoutons enfin que le rôle du principe de Pauli ne se borne pas à assurer l’existence de la matière, mais conditionne toutes ses propriétés électroniques détaillées, en particulier la conductivité ou la semi-conductivité des matériaux qu’utilise la technologie électronique. »

9) Jean-Marc Lévy-Leblond dans « La quantique à grande échelle », article de l’ouvrage collectif « Le monde quantique »

« L’approche philosophique et culturelle des problèmes de la mécanique quantique devait tout naturellement privilégier les discussions sur le déterminisme… Alors qu’au fil des années 1930, Bohr tend à minimiser de plus en plus le côté contradictoire, paradoxale, de la complémentarité des aspects ondulatoire et corpusculaire, Louis de Broglie, au contraire, le souligne de plus en plus. Il parle de contradiction, d’exclusion, de conflit, mais rarement de complémentarité. Le conflit se généralise peu à peu pour devenir le conflit de la cinématique et de la dynamique. De Broglie l’illustre en réactualisant le paradoxe de Zénon : « Dans le macroscopique, Zénon paraît avoir tort, poussant trop loin les exigences d’une critique trop aïguë, mais dans le microscopique, à l’échelle des atomes, sa perspicacité triomphe et la flèche, si elle est animée d’un mouvement bien défini, ne peut être en aucun point de sa trajectoire. Or, c’est le microscopique qui est la réalité profonde, car il sous-tend le macroscopique. »

10) Louis de Broglie : « A tout élément matériel de masse m est associée une onde dont la longueur d’onde lambda est égale à h divisé par le produit de la masse m et de la vitesse v de cette masse. »

QUANTIQUE ET CLASSIQUE

« L’existence du quantum d’action (…) implique une sorte d’incompatibilité entre le point de vue de la localisation dans l’espace et dans le temps et le point de vue de l’évolution dynamique (…) La localisation exacte dans l’espace et le temps est une sorte d’idéalisation statique qui exclut toute évolution et toute dynamique. (…) Dans la mécanique classique, il était permis d’étudier pour eux-mêmes les déplacements dans l’espace et de définir ainsi les vitesses, les accélérations sans s’occuper de la façon dont sont matériellement réalisés ces déplacements : de cette étude abstraite des mouvements, on s’élevait ensuite à la dynamique en introduisant quelques principes physiques nouveaux. Dans la mécanique quantique, une semblable division de l’exposé n’est plus en principe admissible puisque la localisation spacio-temporelle qui est à la base de la cinématique est acceptable seulement dans une mesure qui dépend des conditions dynamiques du mouvement. Nous verrons plus loin pourquoi il est néanmoins parfaitement légitime de se servir de la cinématique quand on étudie des phénomènes à grande échelle ; mais pour les phénomènes de l’échelle atomique où les quanta jouent un rôle prépondérant, on peut dire que la cinématique, définie comme l’étude du mouvement faite indépendamment de toute considération dynamique, perd complètement sa signification. Une autre hypothèse implicite sous-jacente à la physique classique est la possibilité de rendre négligeable par des précautions appropriées la perturbation qu’exerce sur le cours des phénomènes naturels le savant qui, pour les étudier avec précision, les observe et les mesure. (… ) Il résulte en effet, de l’existence du quantum d’action, ainsi que l’ont montré les fines et profondes analyses de Mrs Heisenberg et Bohr, que toute tentative pour mesurer une grandeur caractéristique d’un système donné a pour effet de perturber d’une façon inconnue d’autres grandeurs attachées à ce système. D’une manière plus précise, toute mesure d’une grandeur qui permet de préciser la localisation d’un système dans l’espace et dans le temps a pour effet de perturber d’une façon inconnue une grandeur conjuguée de la première qui sert à spécifier l’état dynamique du système. En particulier, il est impossible de mesurer en même temps avec précision deux grandeurs conjuguées. On comprend alors dans quel sens on peut dire que l’existence du quantum d’action rend incompatible la localisation spatio-temporelle des parties d’un système et l’attribution à ce système d’un état dynamique bien défini puisque, pour localiser les parties du système, il faut connaître exactement une série de grandeurs dont la connaissance exclut celle des grandeurs conjuguées. Relatives à l’état dynamique, et inversement. (…) Le lien entre les résultats successifs des mesures, qui traduisent pour le physicien l’aspect quantitatif des phénomènes, n’est plus un lien causal conforme au schéma déterministe classique, mais bien un lien de probabilité, seul compatible avec les incertitudes qui dérivent, comme nous l’avons expliqué plus haut, de l’existence même du quantum d’action. Et c’est là une modification essentielle de notre conception des lois physiques, modification dont on est loin, croyons-nous, d’avoir encore nettement aperçu toutes les conséquences philosophiques. (…) Dans le nouvelle physique quantique, sous la forme que lui a imprimée le développement de la mécanique ondulatoire, les idées de corpuscules et d’ondes, de localisation dans l’espace et le temps et d’états dynamiques bien définis sont « complémentaires » ; il entend par là que la description complète des phénomènes observables exige que l’on emploie tour à tour ces conceptions, mais qu’en un sens ces conceptions sont néanmoins inconciliables, les images qu’elles fournissent n’étant jamais simultanément applicables d’une façon complète à la description de la réalité. Par exemple, un grand nombre de faits observés en physique atomique ne peuvent se traduire simplement qu’en invoquant l’idée de corpuscules de sorte que l’emploi de cette idée peut être considéré comme indispensable au physicien ; de même l’idée des ondes est également indispensable pour la description d’un grand nombre de phénomènes. Si l’une de ces deux idées était rigoureusement adaptée à la réalité, elle exclurait complètement l’autre, mais il se trouve qu’en fait, elles sont toutes les deux utiles dans une certaine mesure pour la description des phénomènes et que, malgré leur caractère contradictoire, elles doivent être alternativement employées suivant les cas. Il en est de même des idées de localisation dans l’espace et le temps et d’état dynamique bien déterminé : elles sont aussi « complémentaires » comme les idées de corpuscules et d’ondes auxquelles, elles sont d’ailleurs, nous le verrons, étroitement rattachées. On peut se demander comment ces images contradictoires n’arrivent jamais à se heurter de front parce qu’il est impossible de déterminer simultanément tous les détails qui permettraient de préciser entièrement ces deux images et cette impossibilité qui est exprimée en langage analytique par les relations d’incertitude d’Heisenberg repose en définitive sur l’existence du quantum d’action. (…) Ainsi, on peut dire que les corpuscules existent puisqu’un grand nombre de phénomènes peuvent être interprétés en invoquant leur existence. Néanmoins, dans d’autres phénomènes, l’aspect corpusculaire est plus ou moins voilé et c’est un aspect ondulatoire qui se manifeste. (…) Il est inconcevable en mécanique classique que le mouvement du point matériel traversant un trou dépende du fait qu’il y ait ou pas d’autres trous dans l’écran à distance finie du premier (expérience des fentes de Young). »

11) De Broglie dans « La physique nouvelle et les quanta »

Le quanta est la base de toute particule, de toute interaction et de tout mouvement. Le quanta ne peut exister qu’en nombre entier : un, deux, trois, etc... C’est dire que la physique quantique a mené à une conception discontinue du monde.

Mais ce n’est pas tout. Là où la physique classique envisageait la particule comme un état déterminé et fixe, la physique quantique a dû développer la notion de superposition d’états. Cette superposition s’est appelée fonction d’onde. Il ne s’agissait plus d’ondes au sens classique. L’un des problèmes que cela posait était celui appelé "réduction du paquet d’ondes" puisque la superposition d’états était brutalement supprimée en cas de mesure (ou d’interaction), ce passage de la superposition à un seul état restant mystérieux et inconcevable comme un miracle, ce qui est inacceptable. Tout d’abord, cela suppose qu’une dynamique serait une somme de stationnarité. Ensuite, cela n’explique ni le passage d’un état à un autre ni ne donne une interprétation à la superposition. Du coup, la physique a dû reconcevoir sa thèse en adoptant un point de vue dynamique qui remettait en cause l’ancien point de vue philosophique.

L’infiniment petit se comporte très différemment de l’environnement macroscopique auquel nous sommes habitués. Quelques différences fondamentales qui séparent ces deux mondes sont par exemples :

• la quantification : Un certain nombre d’observables, par exemple l’énergie émise par un atome lors d’une transition entre états excités, sont quantifiés, c’est-à-dire qu’ils ne peuvent prendre leur valeur que dans un ensemble discret de résultats. A contrario, la mécanique classique prédit le plus souvent que ces observables peuvent prendre continûment n’importe quelle valeur.

• la dualité onde-particule : La notion d’onde et de particule qui sont séparées en mécanique classique deviennent deux facettes d’un même phénomène, décrit de manière mathématique par sa fonction d’onde. En particulier, l’expérience prouve que la lumière peut se comporter comme des particules (photons, mis en évidence par l’effet photoélectrique) ou comme une onde (rayonnement produisant des interférences) selon le contexte expérimental, les électrons et autres particules pouvant également se comporter de manière ondulatoire.

• le principe d’incertitude de Heisenberg : Une incertitude fondamentale empêche la mesure exacte simultanée de deux grandeurs conjuguées. Il est notamment impossible d’obtenir une grande précision sur la mesure de la vitesse d’une particule sans obtenir une précision médiocre sur sa position, et vice versa. Cette incertitude est structurelle et ne dépend pas du soin que l’expérimentateur prend à ne pas « déranger » le système ; elle constitue une limite à la précision de tout instrument de mesure.

• le principe d’une nature qui joue aux dés : Si l’évolution d’un système est bel et bien déterministe (par exemple, la fonction d’onde régie par l’équation de Schrödinger), la mesure d’une observable d’un système dans un état donné connu peut donner aléatoirement une valeur prise dans un ensemble de résultats possibles.

• l’observation influe sur le système observé : Au cours de la mesure d’une observable, un système quantique voit son état modifié. Ce phénomène, appelé réduction du paquet d’onde, est inhérent à la mesure et ne dépend pas du soin que l’expérimentateur prend à ne pas « déranger » le système.

• la non-localité ou intrication : Des systèmes peuvent être intriqués de sorte qu’une interaction en un endroit du système a une répercussion immédiate en d’autres endroits. # Ce phénomène contredit en apparence la relativité restreinte pour laquelle il existe une vitesse limite à la propagation de toute information, la vitesse de la lumière ; toutefois, la non-localité ne permet pas de transférer de l’information.

• la contrafactualité : Des évènements qui auraient pu se produire, mais qui ne se sont pas produits, influent sur les résultats de l’expérience.


Signatures: 0
Répondre à cet article

Forum

Date Nom Message